3GPP TSG-SA WG3 Meeting #95
S3-191212
Reno (USA), 6-10 May 2019
revision of S3-19xabc
Source:
NEC
Title:
Resolving Editor’s Notes and adding conclusion to solution #20 (Key Identification when Implicit bootstrapping is used)
Document for:
Approval
Agenda Item:
8.5
1
Decision/action requested

Approve the following pCR to key identification for implicit bootstrapping in AKMA (TR 33.835).
2
References

[1]
TR 33.835, v0.4.0 (S3-190923)
3
Rationale

The solution #20 in [1] currently contains three Editor’s Notes. The first one reads:

Editor’s Note: The impacts of using ngKSI for key identification is FFS.
This Editor’s Note asks for an impact analysis of using the ngKSI, which is a three bit value for identifying the KAUSF. In this contribution, we analyse the system impacts of using this value.

The second EN reads:

Editor’s note: The evaluation is FFS.

In this contribution, we present a proposal for an evaluation to indicate:

· Which key issues and the related requirements this solution cover.

· What the context of the solution is

· What the advantages, drawbacks, and system impacts are.
The third Editor’s note is as follows:

Editor’s Note: The evaluation should make statements of how and whether backwards compatibility is achieved if existing network nodes are touched.

For this EN we present an analysis that presents how and whether backwards compatibility is achieved for network nodes that are touched by this solution.
3.1
Impact analysis of using ngKSI for key identification
Using ngKSI for identification of KAUSF has the following high level impacts:

1)
Core network interfaces: Impact on the message exchange between the SEAF and the AUSF because the ngKSI will have to be included in one of the message exchanges

2)
An udated key derivation so that the derivation of KSEAF is derived from KAUSF and the ngKSI as well.
Impact 1) only affects the ME and the home network and has no interface or signalling impact. In fact, it could be implemented by adding a configuration parameter in USIM (to be read by the ME), that ngKSI is to be used when calculating KSEAF. Such a solution would work for Release-16 UEs and Release-16 core networks.
Impact 2) however depends on impact 1). If the home network has no knowledge of the ngKSI, it will not be able to calculate the KSEAF from KAUSF and the ngKSI as proposed in this solution variant. Impact 2) also affects signalling between the home network and the serving network and requires both networks to be updated to Relese-16.

For cross-release compatible security, the ABBA parameter was introduced in TS 33.501. The ABBA parameter, however does not signal home network capabilities. In order to resolve this issue, the following changes would be required:
1)
The serving network would have to indicate the compatibility of sending the ngKSI using the ABBA parameter

2)
The home network would have to indicate the compatibility of receiving the ngKSI using a USIM configuration;

3)
The UE would have to indicate the compatibility of using the ngKSI as KAUSF identifier using fields in the SUCI, using either a new field or using the routing parameter or key identification parameter as one of the fields.

In summary: it is possible to use ngKSI; however, the system impact of using ngKSI is quite large.
3.2
Analysis of backwards compatibility with Release 15 network nodes

One of the assumptions of this solution is that the the KAUSF is used for deriving KAKMA. As such, this solution only applies for those solutions where the AUSF is already changed to implement the feature of using KAUSF for KAKMA. The impact analysis is therefore performed under the assumption that the AUSF is upgraded. In this analysis of backwards compatibility, we restrict ourselves to option 1 of the solution. For the analysis of option 2, we refer to section 3.1 above.

The impacts of this solution (option 1) on the AUSF are:
1)
The AUSF will have to store and calculate a Key Identifier for each KAUSF that it stores;

2)
The AUSF will have to store multiple KAUSFs for each UE.

No other network nodes are impacted by this solution (option 1). As can be concluded from the impacts, this solution is not backwards compatible with Release-15 as far as key storage and retrieval is concerned. The latter, however, causes an issue that this solution tries to resolve. As such, this solution in itself has no effect on backwards compatibility, but depends on solutions that will have.

The impacts of this solution (option 1) on the UE are:
1)
The UE will have to store on KAUSF together with a Key Identifier;

This solution has no impacts on existing signalling, however, for newly introduced signalling for AKMA purposes, it is required that the Key Identifier is included.
This impact analysis does not show blocking issues with respect to backwards compatibility. Corresponding text is added to the evaluation clause.
3.3
Other changes.
The sentence claiming that this solution addresses KI#3 is removed. The essence of the solution is to address KI#15.

3.4
Relation to TS 33.501

The problem of key synchronization also exists for other services as defined in TS 33.501. As such, a statement is added to the evaluation stating that a solution in the scope of TS 33.501 may supersede this solution. In such a case, the solution from TS 33.501 should also be applied to AKMA.
4
Detailed proposal

*** Start of Change ***
6.20
Solution #20: Key Identification when Implicit Bootstrapping is used

6.20.1
Introduction
This solution addresses key issue #15 (Synchronization of keys when using established keys).
This solution introduces a key identifier in order to identify the key used for implicit bootstrapping. The key to be identified depends on the solution and can be an established key from the 5G key hierarchy or a key derived from this key hierarchy such as the KAKMA. This solution refers to the KAUSF and the AUSF, however, it can easily be generalized to also work for other keys and other network functions.

The solution has two options:

1)
The key identifier is calculated from the keys; and
2)
The ngKSI is reused.
6.20.2
Solution details
6.20.2.1
Option 1 – Key Identifier calculated from the keys

In this option, an AKMA KAUSF identifier (A-KI) is calculated from the KAUSF as follows:

A-KI = KDF (KAUSF, "AKMA").

The UE and the AUSF will store the KAUSF together with this identifier. The UE and AUSF may store more than one A-KI and KAUSF pair in order to address the desynchronization error situation.

In order to use the key, the procedure is as follows:
1)
Whenever the UE starts an initiation procedure for AKMA, the UE will retrieve the A-KI corresponding to the latest KAUSF from memory. The UE will then send a service request according to solution 2 to the AKMA server including the A-KI of the KAUSF.

2)
The AKMA server / AUSF looks up the key based on the A-KI received (and UE identity if included) and if found, uses this key for further procedures with the UE. If no key was found, the AUSF will either:

-
Fall back to solution #2 and run an authentication; or

-
Return an error message with another A-KI that the AUSF has in memory for the UE.

3)
Upon reception of the response, the UE will either:

-
Perform the authentication according to solution #2; or

-
Retrieve the KAUSF that corresponds to the A-KI received, or if not found, return an error message.
6.20.2.2
Option 2 – Reuse of ngKSI

In this option, the existing ngKSI is reused. In order to do so, the AUSF has to receive the ngKSI that is communicated to the UE. This can be achieved as follows:

EAP AKA'

After the SEAF has received the RES from the UE, the SEAF forwards the RES in a Nausf_Authentication Authenticate Request message to the AUSF. In this message, the SEAF also includes the ngKSI.
The AUSF then stores the ngKSI together with the KAUSF.

5G AKA

After the SEAF has received the RES* from the UE, the SEAF forwards the RES* in a Nausf_Authentication Authenticate Request message to the AUSF. In this message, the SEAF also includes the ngKSI.
The AUSF then stores the ngKSI together with the KAUSF.

Binding of the ngKSI to KSEAF
In order to make sure that both the UE and the AUSF have the same ngKSI, the calculation of the KSEAF is changed as follows to also include the ngKSI.:

KSEAF = KDF (KAUSF, Serving network name, ngKSI)
Using the key
In order to use the key, the procedure is as follows:
1)
Whenever the UE starts an initiation procedure for AKMA, the UE will retrieve the ngKSI corresponding to the latest KAUSF from memory. The UE will then send a service request according to solution 2 to the AKMA server including the ngKSI of the KAUSF.

2)
The AKMA server / AUSF looks up the key based on the ngKSI received (and UE identity if included) and if found, uses this key for further procedures with the UE. If no key was found, the AUSF will either:

-
Fall back to solution #2 and run an authentication; or

-
Return an error message with another ngKSI that the AUSF has in memory for the UE.

3)
Upon reception of the response the UE will either:

-
Perform the authentication according to solution #2; or

-
Retrieve the KAUSF that corresponds to the ngKSI received or if not found, return an error message.
6.20.3
Evaluation

This solution addresses key issue #15 (Established Key Synchronization). For key issue #15, the following requirements are met as follows:
KI #15 - Requirement: If established keys are used for AKMA, the keys shall be identifiable.
This requirement is met by calculating a key identifier from KAUSF and using this key identifier in subsequent procedures.
KI #15 – Requirement: Potential AKMA use of established keys shall not lead to a denial of service.
This requirement refers to the possibility that the keys used to derive KAKMA may be out-of-sync. In this solution, a denial of service is mitigated by the use of the key identifier and by the AUSF storing multiple pairs of key and its key identifier.
This solution’s context is limited to only the problem of key synchronization if implicity bootstrapping is used. If no implicit bootstrapping is used, this solution does not apply. However, the problem of key synchronization applies to a wider set of services defined in TS 33.501 [10]. As such, this solution may be superseded by a solution within the scope of TS 33.501 [10], if one is developed.
Two options discussed in the solution detail subclause have different system impacts. For option 1, the system impact is limited to the AUSF, which will have to store key identifiers along with KAUSF (and potentially store multiple pairs). The AUSF is already impacted if implicit bootstrapping is used. This option therefore has a limited additional system impact.

For option 2, the system impact is larger. Backwards compatibility is difficult to achieve because all three of the the UE, the serving network and the home network have to be compatible with the mechanism. Furthermore, this option impacts existing signalling between the SEAF and AUSF during primary authentication. As such, this option is considered to have a large system impact. Option 2 is therefore not preferred.
The advantages of option 1 are that this solution is relatively straightforward. The disadvantage is that the AUSF has to store a key identifier in addition to storing KAUSF. Also, the solution works better if the AUSF stores multiple pairs of key identifier and KAUSF for each UE. This is a drawback because it requires additional storage in the AUSF and the UE.
*** End of Change ***
